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Crystal-structure topologies, represented by periodic nets, are described by

labelled quotient graphs (or voltage graphs). Because the edge space of a finite

graph is the direct sum of its cycle and co-cycle spaces, a Euclidian

representation of the derived periodic net is provided by mapping a basis of

the cycle and co-cycle spaces to a set of real vectors. The mapping is consistent if

every cycle of the basis is mapped on its own net voltage. The sum of all outgoing

edges at every vertex may be chosen as a generating set of the co-cycle space.

The embedding maps the cycle space onto the lattice L. By analogy, the concept

of the co-lattice L* is defined as the image of the generators of the co-cycle space;

a co-lattice vector is proportional to the distance vector between an atom and

the centre of gravity of its neighbours. The pair (L, L*) forms a complete

geometric descriptor of the embedding, generalizing the concept of barycentric

embedding. An algebraic expression permits the direct calculation of fractional

coordinates. Non-zero co-lattice vectors allow nets with collisions, displacive

transitions etc. to be dealt with. The method applies to nets of any periodicity

and dimension, be they crystallographic nets or not. Examples are analyzed:

�-cristobalite, the seven unstable 3-periodic minimal nets etc.

1. Introduction

After the pioneering works of Wells (1977) and O’Keeffe &

Hyde (1980), 2- or 3-periodic nets have been commonly

used to describe the topology of crystal structures. General

definitions and recent developments in the application of

graph theory to crystal chemistry have been summarized

by Delgado-Friedrichs & O’Keeffe (2005) and Delgado-

Friedrichs et al. (2005). Periodic nets are infinite graphs and it

is convenient to handle their quotient graph in relation to a

maximal translation subgroup, since the latter is a finite graph.

Labelled quotient graphs are particularly more suitable

because they are in a one-to-one correspondence with peri-

odic nets (Chung et al., 1984; Delgado-Friedrichs, 2004). It is

easily verified that the space group of a crystal structure is

isomorphic to a subgroup of the automorphism group of the

associated net. In this work we turn back to the converse

problem of finding a Euclidian embedding (i.e. an injective

representation) of maximum acceptable symmetry for a

p-periodic net, given its labelled quotient graph. This problem

is significant in the context of systematic generation of peri-

odic nets derived from pre-defined classes of labelled quotient

graphs. We look then for an embedding of the derived periodic

net whose space group is both maximal in the full combina-

torial automorphism group of the net and consistent with the

given quotient graph.

Delgado-Friedrichs & O’Keeffe (2003) and Delgado-

Friedrichs (2004, 2005) defined equilibrium or barycentric

placements of periodic graphs in Euclidian space as realiza-

tions of the graph where each vertex is at the centre of gravity

of its neighbours. It was shown that (i) equilibrium placements

are essentially unique and (ii) every periodic automorphism

(i.e. an automorphism which is consistent with the translation

subgroup) of a periodic graph can be associated with an

isometry in the equilibrium placement. The program SYSTRE

(Delgado-Friedrichs & O’Keeffe, 2003) directly solves the

linear system associated with equilibrium placements and

finds the vertex coordinates and the ideal space group for 2-

and 3-periodic nets without collisions. Fractional coordinates

and lattice parameters may be refined within the ideal space

group by minimizing the edge-length variance and maximizing

the unit-cell volume, so that equilibrium placements are but

convenient intermediates for finding physically more realistic

embeddings.

Recently, Thimm (2009) showed that the topology of a

periodic net represented by its labelled quotient graph

determines the minimal (inevitable) symmetry as well as the

maximal possible symmetry of an embedding. The analysis



uses the linear representation of the automorphisms of the

quotient graph that are consistent with the vector labels. This

technique was already described in previous works (Eon,

1998; Klee, 2004; Thimm & Winkler, 2006) and enables the

constraints on edge vectors imposed by the existence of some

symmetry operation to be written down.

Although they are complementary in some sense, both cited

approaches miss some relevant inter-relationship between

topology and geometry, specifically site symmetry. In the

approach of the equilibrium placement, the embedding must

be found before the respective space group is determined. It

is known (Delgado-Friedrichs et al., 2005) that descent in

symmetry may be necessary in some cases, as for nets with

collisions, but no general technique seems to have been

reported, at least to the knowledge of this author. In contrast,

descent in symmetry is allowed in Thimm’s approach but

structural motives remain hidden: why should one look for

lower symmetry and how much lower? In both cases site

symmetry is casually read off from final data. This paper

describes a unifying graph-theoretical framework for the

construction of Euclidian embeddings of periodic nets with

the maximum acceptable symmetry. The determinant role of

site symmetry (local distortions) as structure-directing in

conjunction with topology is emphasized. Two complementary

points of view are integrated here.

(1) A periodic net N with quotient graph G is isomorphic to

a (partial) quotient of the minimal net MðGÞ derived from G.

This property has geometrical implications: it is possible to

obtain a representation of the net N as a projection of an

embedding of the minimal net MðGÞ. Several examples were

examined by Eon (1998).

(2) Because the cycle and co-cycle spaces of a finite

graph are supplementary vector spaces with respect to its edge

space, a Euclidian representation of the derived periodic net

can be equivalently provided (i) by mapping the edges of the

graph to a consistent set of real vectors, as performed by

Thimm (2009), or (ii) by mapping the bases of the cycle and

co-cycle spaces to lattice vectors and to an arbitrary set of real

vectors, respectively. The latter ideas were introduced by Eon

(1999).

In this contribution, embeddings are constructed according

to item (2-ii), hence mapping directly the cycle space of the

quotient graph onto the lattice L. By analogy, a co-lattice L� is

defined as the image set of the generators of the co-cycle

space. The pair (L;L�) forms a complete geometric descriptor

of the embedding. The space group of the embedding defined

by (L;L�) contains only the symmetry operations of the

barycentric embedding (L; 0) that leave the co-lattice L�

invariant. In general, the lattice type may be determined from

some barycentric representation of maximum symmetry: the

construction of a particular embedding is described according

to item (1), from which a metric tensor is easily determined.

Non-zero co-lattice vectors may then be introduced in the

case of representations with collisions or to take account of

displacive transitions, for example. The method applies to nets

of any periodicity and dimension, be they crystallographic nets

or not. Since the goal of this paper is to describe the method,

only embeddings of known periodic nets will be analyzed for

illustration.

x2 gives an overview of the methodology used in the paper,

with the aim of guiding the reader throughout the paper but

also to justify the mathematical apparatus. The basic concepts

of graph theory can be found in Harary (1972). However, we

shall find it useful to cast the problem into the language of

topological graph theory (Gross & Tucker, 2001), borrowing

also some tools from algebraic graph theory (Godsil & Royle,

2004). Accordingly, x3 introduces the basic definitions leading

to the concept of a voltage graph, which generalizes that of a

labelled quotient graph. The definitions of periodic net,

barycentric representation and embedding of a periodic net

are given in x4, x5 and x6, respectively. The isomorphism

theorem is exposed in x7. The analysis of the embedding of

some 2-, 3- and 4-periodic crystallographic nets without

collisions, chosen as examples for their simplicity, is presented

in x8. x9 discusses two non-barycentric embeddings of stable

nets, one with ideal symmetry (�-W), the other with descent in

symmetry (�-cristobalite). x10 proposes maximum-symmetry

embeddings for the seven unstable 3-periodic minimal nets,

and x11 illustrates an application to non-crystallographic nets.

2. An overview of the methodology

This section presents a simple illustration for each of the two

above-mentioned viewpoints.

2.1. Embeddings as projections

We consider here hxl [or ð36Þ, the well known triangular

net], with quotient graph B3, the graph (bouquet) with one

vertex and three loops, as drawn in Fig. 1. [When possible we

shall name the net by using its three-letter code, as defined by

O’Keeffe et al. (2008).]
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Figure 1
(a) The triangular net hxl, (b) its labelled quotient graph B3 with voltage
assignment in Z2 and (c) the labelled quotient graph B3 of the cubic net
with voltage assignment in Z3. The relationship between hxl and the unit
cell of pcu is highlighted in (a).



Of course, B3 is also the quotient graph of the minimal net

pcu (the primitive cubic net). It results that hxl is a quotient

graph of pcu, which may be explicitly determined by an

analysis of the essential rings of the net. We recall first that a

strong ring is a cycle that is not the sum of any number

of shorter cycles. For instance, the 4-cycle A00A10A11A01A00

(denoting by Aij the vertices of hxl) is the sum of two cycles:

A00A10A11A00 and A00A11A01A00, which are strong rings.

Essential rings are those strong rings which are the faces of a

tiling of the embedding (Delgado-Friedrichs & O’Keeffe,

2005). The essential rings of hxl are the above-mentioned

triangles running along three translationally non-equivalent

edges of the net; in fact the two triangles tiling the unit cell

determine symmetry-related strong rings and differ only in the

sequence of the edges from different edge lattices. Because

each edge lattice of hxl is represented by a loop in its quotient

graph B3, the essential ring A00A10A11A00 is mapped (projects)

in B3 to a closed walk running once along every loop, so that

its net voltage (i.e. the sum of vector labels over the loops that

are crossed along the walk in B3, which corresponds to the

increments in the indices ij along the ring in hxl) is

10þ 01þ 11 = 00. Now the net voltage over the same closed

walk in the quotient graph of pcu is 111. We deduce that hxl is

isomorphic to the quotient of pcu by the subgroup generated

by the translation 111, which may be written as hxl ’

pcu=h111i. Formally, the quotient operation by a translation

subgroup of pcu may be interpreted as the congruence rela-

tionship 111 � 000. In particular, this congruence leads to

001 � 110 so that we may first replace the voltage 001 by 110

in the labelled quotient graph of pcu and then drop the third

useless zero index, common to every voltage of B3, to obtain

the labelled quotient graph of hxl. Finally, we observe that the

quotient relationship between the two nets is clearly asso-

ciated with a projection relationship between their embed-

dings, which has been highlighted in Fig. 1. It happens that a

maximum-symmetry embedding of hxl (p6mm, No. 17) in

Euclidian space is obtained by orthogonal projection of a

maximum-symmetry embedding of pcu (Pm3m, No. 221)

along the crystallographic direction [111].

2.2. Lattice and co-lattice vectors

Fig. 2 shows the 2-cycle C2 with voltage assignment in Z and

three possible embeddings in E2 of the derived 1-periodic

graph. Instead of defining the embedding by mapping the two

edges e1 and e2 on two vectors in the plane, one may use the

lattice vector a associated with the cycle e1 � e2 and the co-

lattice vector L�A associated with the co-boundary e1 þ e2 of

vertex A in C2. (The co-boundary of some vertex is defined as

the sum of incident edges with outgoing orientation at this

vertex.) Because the mapping is linear by assumption, both

descriptions are mathematically equivalent but the latter helps

to clarify how the overall symmetry of the embedding depends

on the local distortion at points A through the associated co-

lattice vector L�A. To see this, call C the centre of gravity of the

two B neighbours of a point A; it is readily seen that L�A =

2AC. Hence the co-lattice vector at some point, being equal to

the distance vector from this point to the centre of gravity of

its neighbours multiplied by its degree, is a measure of the

local distortion with respect to a barycentric embedding. Since

distortions are opposed at points B (by definition L�B =

�e1 � e2), the more general embedding drawn in Fig. 2(a)

displays an inevitable two-fold rotation, in fact associated with

the combinatorial symmetry ðe1; �ee1Þðe2; e2Þ of C2. If L�A is

orthogonal to the lattice vector a, a reflection symmetry is

added to the embedding as seen in Fig. 2(b). This reflection

corresponds to the combinatorial symmetry ðe1; e2Þ of C2. The

barycentric embedding shown in Fig. 2(c) corresponds to L�A =

0 and displays a new translation symmetry with lattice vector

a/2, this time associated with combinatorial symmetry ðe1; e2Þ

of C2.

3. Quotient graphs and voltage graphs

Let G = ðV;E; iÞ be a graph, possibly containing loops and

multiple edges (some authors speak then of a multigraph or

pseudograph), defined on two disjoint sets, the vertex set V =

VðGÞ and the edge set E = EðGÞ, by the incidence mapping

i : e 7 �! iðeÞ ¼ fu; vg

for e 2 E, ðu; vÞ 2 V2 with v = u if e is a loop; the incidence

relation will be noted e � fu; vg. This definition of G as a triple

is essential for handling graphs with loops and multiple edges.

For simplicity, members of the union set XðGÞ =

VðGÞ [ EðGÞ are called elements of the graph. A graph

automorphism ’ is a permutation on XðGÞ, whose restrictions

to VðGÞ and EðGÞ are permutations on these sets that are

consistent with the incidence relationship, i.e. ’ðeÞ �
f’ðuÞ; ’ðvÞg for any edge e � fu; vg. Let Aut(G) denote the

automorphism group of G. A non-trivial automorphism acts

freely on the graph if it admits no fixed elements x = ’ðxÞ for

x 2 XðGÞ. Let F be a subgroup of Aut(G) which acts freely on

G and denote by ½x�F the orbit of x 2 XðGÞ byF (i.e. the set of

all the images of x by F ). The regular quotient G=F is the

graph of the orbits defined as follows,
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Figure 2
C2 with voltage assignment in Z and possible embeddings of the derived
1-periodic graph with (a) an arbitrary distortion L�A, (b) L�A orthogonal to
lattice vectors, and (c) no distortion (barycentric embedding).



VðG=FÞ ¼ f½u�F : u 2 Vg;

EðG=FÞ ¼ f½e�F : e 2 Eg;

½e�F � f½u�F ; ½v�F g iff e � fx; yg for some x 2 ½u�F ; y 2 ½v�F :

To define an orientation � on a graph G, we introduce a

digraph G� = ðV;E�; i�Þ on the same vertex set V, where

(1) � : E� �! E is a two-to-one, onto mapping, so that we

may arbitrarily note eþ and e�, the two arcs mapped on an

edge e with

(2) i�ðeþÞ ¼ ðu; vÞ and i�ðe�Þ ¼ ðv; uÞ for e � fu; vg:
The incidence relation in G� will be noted eþ � uv and

e� � vu. We shall refer to G as the underlying graph to G�. In

practice, we simply indicate the positive arc, eþ, of G� by

drawing an arrow on each edge e of G. It is worth noting that

the definition also applies to graphs with multiple edges and

an arbitrary number of loops on each vertex, which per se fully

justifies the complexity of the construction.

An automorphism of a graph with an orientation is a

permutation of both the vertex and arc sets, which is consistent

with the incidence mapping and is invariant by reversal of the

signs. We shall frequently represent an automorphism by its

arc permutation using the cyclic notation since corresponding

vertex permutations can easily be deduced. Instances of such

automorphisms include loop inversions ðeþ; e�Þ, or fourth-

order permutations such as ðeþ1 ; eþ2 ; e�1 ; e�2 Þ for two loops e1

and e2 at the same vertex. If G has no loops, then Aut(G�) ’

Aut(G).

A voltage assignment in a group A on a graph G with an

orientation � is a mapping � : E� �!A such that �ðe�Þ =

½�ðeþÞ��1, where a�1 designates the inverse of a in A. In the

context of this contribution, voltages are vector labels from

A = Zp for generating p-periodic nets. Only voltages corre-

sponding to the positive orientation of the edge are indicated

on the graph, as for example in the two labelled quotient

graphs of hxl and pcu in Fig. 1. Given a graph G with an

orientation � and voltage assignment � in a group A, the

derived digraph has vertex set V 	A, arc set E� 	 A and

incidence relation ðe; aÞ � ðu; aÞðv; abÞ for e � uv with a; b =

�ðeÞ 2 A. The derived graph D = G � is the underlying graph to

the derived digraph (denoted by D�). The group A acts freely

on the derived graph if the action of f 2 A on the element

(vertex or edge) ðx; aÞ 2 G � is given by f ½ðx; aÞ� = ðx; faÞ

(Gross & Tucker, 2001).

4. Periodic nets and their quotient graphs

Definition 4.1. A net is a simple 3-connected graph, which is

locally finite (i.e. every vertex has finite degree).

Definition 4.2. A p-periodic net is a pair ðN; T Þ where N is a

net and T 
 Aut(N) is a free Abelian group of automorph-

isms of rank p, called the translation group of the net, such

that the number of vertex and edge orbits by T in N is finite.

The above definition does not require that T be maximal in

Aut(N). Indeed, periodic distortions may reduce the transla-

tional symmetry in some crystal structures. An example is

�-cristobalite (low-temperature), whose topology is better

described by that of diamond since, after substitution of Si—

O—Si links by simple Si—Si links, the two structures are

represented by isomorphic nets. However, the primitive unit

cell of diamond contains two C atoms while that of

�-cristobalite contains four Si atoms. In this case, the trans-

lational isometry group of �-cristobalite corresponds to a

subgroup of index two of the combinatorial translation group

of the associated net. Because we want to find an embedding

of the net that describes the real crystal structure, we must

consider the translational isometry subgroup T of the

embedding at the expense of the full combinatorial translation

group of the net in the definition of the periodic net ðN; T Þ.
Hence, although �-cristobalite and diamond are isomorphic as

nets, they are not isomorphic as 3-periodic nets. Note that a

careful analysis of the labelled quotient graph N=T still allows

the full combinatorial translation group of the net N to be

determined (Eon, 2005).

Proposition 4.1. The translation group T of a periodic net

ðN; T Þ acts freely on the net N.

Proof. Suppose that some non-trivial translation t 2 T fixes an

edge e � fu; vg; clearly t 2 is a non-trivial translation fixing

both vertices u and v. It is then sufficient to prove that no non-

trivial translation can fix a vertex. Let t 2 T be such a trans-

lation fixing a vertex u. Then, for any � 2 T , we have t � �ðuÞ =

� � tðuÞ = �ðuÞ, so that t fixes the whole orbit ½u�T of u by T .

Take now a vertex v not in ½u�T ; its orbit ½v�t by hti (the free

subgroup generated by t) is finite since every vertex in ½v�t is at

a fixed distance from u, and N is locally finite. We can thus find

some non-trivial automorphism in hti that fixes v, and hence

fixes the whole orbit ½v�T . Since the number of orbits in N is

finite, the argument can be repeated until we find a non-trivial

automorphism in hti that fixes the whole vertex set of N, a

contradiction in a free group. &

As especially important for its applications in solid state

chemistry, we recall the following definition (Klee, 2004),

based on the abstract definition of a space group (Schwar-

zenberger, 1980).

Definition 4.3. A crystallographic net is a periodic net whose

automorphism group is isomorphic to an abstract space group.

By virtue of Proposition 4.1, the quotient graph N=T of a

periodic net ðN; T Þ is a regular quotient. This property

ensures that N=T describes faithfully the first neighbourhood

of every vertex of the net (see Gross & Tucker, 2001). The

quotient graph, however, fails to represent the overall

topology of the net. Let us recall from Harary (1972) that the

cyclomatic number c of a finite graph G = ðV;E; iÞ represents

the number of independent cycles in G and is given by c =

jEj � jVj þ 1, where jXj is the cardinality of the set X . From

a graph with cyclomatic number c > 1 one can derive, up

to isomorphism, infinitely many p-periodic graphs with

0 < p < c. It is then necessary to use a voltage graph with

voltage assignment in T to obtain, up to isomorphism, a one-
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to-one mapping between the periodic net and its labelled

quotient graph (Chung et al., 1984). Consider, for example, the

bouquet B2 with voltage assignment in Z shown in Fig. 3. Any

value of n � 2 yields a 1-periodic net with translation group

isomorphic to Z. The figure displays the 1-periodic net derived

for n = 2. This net is but an example of a lattice net, as defined

by Delgado-Friedrichs & O’Keeffe (2009).

In contrast, from a finite connected graph G of cyclomatic

number c> 0, one can derive a unique c-periodic net, up to

isomorphism: this net is called a minimal net (Beukemann &

Klee, 1992) and denoted MðGÞ. Every periodic net derived

from G can be described as a quotient of MðGÞ by some

translation subgroup.

5. Euclidian representations of periodic nets

Let G be a connected graph with an orientation � containing

n vertices and m edges, with a voltage assignment � in Zp.

According to Godsil & Royle (2004), we define a representa-

tion of a net N in the Euclidian space Er as a mapping

� : XðNÞ ! E
r

such that every vertex u is mapped on a point �ðuÞ and every

edge e � fu; vg is mapped on the line segment �ðeÞ = �ðuÞ�ðvÞ.
A periodic representation of the derived net N = G � is realized

when vertices and edges of G are embedded, respectively, as

point lattices and line lattices of rank p in Er. We call r the

dimension of the representation. Note that the definition

permits p 
 r 
 m; we shall speak of a subperiodic repre-

sentation if p < r. Instead of the net N, one may advanta-

geously consider the derived digraph N�. In a periodic

representation of N�, every arc of G� is mapped on an

oriented line lattice. Since any two arcs eþ and e�, pre-images

for � of some edge e in G, are incident to the same vertices,

they will be embedded as the same line lattice. But as oriented

line lattices, they have opposite orientation. This observation

allows us to transcribe the incidence relationship in G�:

eþ � uv as an affine relation in the periodic representation

of N�:

�ðvÞ ¼ �ðuÞ þ !ðeþÞ;

where ! maps the arc set of G� to Rr, with the constraint

!ðe�Þ = �!ðeþÞ. We may now determine a periodic repre-

sentation of N� using the properties of the edge space of its

quotient graph. Recall that the edge space is formally defined

as the vector space admitting the edges of G as basis vectors. It

is known that the edge space is the direct sum of the cycle and

co-cycle spaces of the graph (Godsil & Royle, 2004).

Let C and S denote, respectively, the cycle and cut (or co-

cycle) spaces of G�, defined on the field of real numbers. As

the basis of the cycle space, we shall take the m 2-cycles,

eþ þ e�, formed by all the pairs of opposite arcs ðeþ; e�Þ when

e runs over the edge set of G, and complete the basis with a

cycle basis of G, which we call Bc, taking into account the

orientation �. We emphasize that G� is a directed graph,

hence the cycles we consider here are directed cycles, i.e.

combinations of arcs that are all forward. We recall that a co-

boundary of a subset U of vertices is defined by Harary (1972)

as the combination of edges joining the vertices of U to the

vertices that are not in U. The co-cycle space is defined as the

subspace of the edge space containing all the linear combi-

nations of co-boundaries; this space is generated by the set

of co-boundaries of single vertices. Taking into account the

orientation of G, we may associate a co-cycle vector with every

vertex by taking the sum of all the arcs of G� with outward

orientation from this vertex. (Rigorously, one should use the

sum of all incident arcs counting positively outward arcs and

negatively inward arcs; the given choice yields the same result

since the 2-cycles (eþ þ e�) are subsequently mapped to zero.)

It is readily verified that the sum of these co-cycle vectors over

the whole vertex set is exactly equal to the sum of the m

2-cycles (eþ þ e�). Hence, the co-cycle basis Bs should contain

only a subset of n� 1 co-cycle vectors chosen among this set.

For further convenience, we introduce the following defini-

tion.

Definition 5.1. A co-lattice in R
r is a set of n vectors L�i

associated with the above-defined co-cycle vectors, withP
i L�i = 0.

Note that the rank of a co-lattice is arbitrary.

Proposition 5.1. A periodic representation in E
r of a

p-periodic net derived from a finite graph G with voltage

assignment in Zp is uniquely determined, up to translation, by

a lattice basis of rank p together with a co-lattice in Rr.

Proof. Call B the 2m	 2m matrix built as follows: the first m

rows correspond to the 2-cycles formed by opposite arcs, the

next ðm� nþ 1Þ rows correspond to the vectors of the cycle

basis Bc, and the remaining ðn� 1Þ rows form a basis Bs of the

co-cycle space S expressed in the standard basis of the edge-

space of G, taking into account the orientation �. We order the

columns of B, writing first the positive arcs and then the

negative arcs listed in the same sequence, yielding the

following square block matrix,

B ¼
Im Im

X Y

� �
;

where Im is the m	m unit matrix. The ij entry in matrix B

gives the coefficient of edge ej in the (cycle or co-cycle) basis

vector i. Then, we define the 2m	 1 column vector
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Figure 3
B2 with voltage assignment in Z and the 1-periodic net derived for n = 2.



� ¼
�þ

��

� �
;

in which the first m rows correspond to the vectors !ðeþÞ and

the last m rows to !ðe�Þ when e runs over the edge set of G.

In a periodic representation of the derived net G � in the

Euclidian space Er the cycle vectors of G� are mapped on

translation vectors given by the net voltages over the corre-

sponding closed walks. Let �ðBÞ be an m	 r matrix whose

ðm� nþ 1Þ first rows are the lattice vectors associated with

net voltages over the basis vectors of Bc and the remaining

rows correspond to a co-lattice in Rr. The previous observa-

tions may be expressed in matrix form as follows,

B� ¼

�
�þ þ��

X�þ þ Y��

�
¼

�
0

�ðBÞ

�
;

from which we derive�
�þ þ�� ¼ 0

X�þ þ Y�� ¼ �ðBÞ
or

�
�� ¼ ��þ

�þ ¼ ðX� YÞ�1�ðBÞ:

Hence, �ðBÞ uniquely determines, up to translation, a periodic

representation of the derived net G � mapping the positive

arcs of G� on the rows of the matrix

�þ ¼ ðX� YÞ
�1�ðBÞ; ð1Þ

which we call the arc matrix for simplification. &

Observe that the entries of matrices X and Y are the coef-

ficients (0 or 1) of positive and negative arcs, respectively, in

the basis vectors of Bc and Bs. Because an edge can only

contribute as a positive or as a negative arc in a directed cycle

or co-cycle, the entries of the difference matrix ðX� YÞ areþ1

if the edge contributes as a positive arc, �1 if it contributes as

a negative arc, and 0 if it does not contribute to the basis

vector. As the change-of-basis matrix between two equivalent

bases in the edge space, the edge basis and the cycle–co-cycle

basis, the difference matrix ðX� YÞ is non-singular (Godsil &

Royle, 2004).

We have seen above that opposite arcs eþ and e� are

embedded as opposite lines in Euclidian space, !ðeþÞ and

!ðe�Þ. In the elaboration of the cycle–co-cycle matrix X� Y,

the two arcs behave as though the respective edge vectors

were opposite in the edge space. Needless to say, this was

precisely the aim pursued with the definition of G�. In the

remainder of this paper we shall make this achievement

explicit by setting that, as edge vectors, e� =�eþ, where e runs

over the edge set of G. This convention amounts to working in

the quotient of the cycle space of G� by the subspace gener-

ated by the m 2-cycles eþ þ e� instead of working in the full

cycle space. For short, we shall define the simplified cycle–co-

cycle matrix B� = X� Y. We now consider a particularly

important kind of representation.

Definition 5.2. We say that a representation of G � is bary-

centric when all the vectors in the co-lattice are the null vector.

Barycentric representations of periodic nets have already

been explored by Eon (1999) and Delgado-Friedrichs (2004,

2005). The fact that the sum of the outgoing arcs at every

vertex is null justifies the epithet barycentric. There is also an

interpretation in terms of the spectrum of the net. Consider

the vector X i (i = 1; . . . ; p) in the vertex space of the net,

whose component xi
j is the ith coordinate of the point Mj

representing vertex j (this index runs over the infinite set Z p).

In a barycentric representation, these points satisfy the rela-

tion
P

k�j MjMk

���!
= 0 for every vertex j, where the sum is over

the neighbours k of j. This yields for the ith coordinateP
k�jðx

i
k � xi

jÞ =
P

k�j xi
k � rjx

i
j = 0, where rj is the degree of

vertex j, and shows that X i is an eigenvector of the Laplacian

matrix of the net associated with the eigenvalue � = 0 [see

Godsil & Royle (2004) for more details about Laplacian

matrices]. In fact, a related linear system is solved by SYSTRE

to determine vertex coordinates of a net in an equilibrium

placement.

Notice that Proposition 5.1 extends Theorem 4 of Delgado-

Friedrichs (2005), which proved the uniqueness of the bary-

centric placement of a periodic net, given a lattice basis. The

method described here provides a unique representation,

whatever the image of the co-cycle basis vectors, i.e. it extends

the embedding’s existence and uniqueness results to non-

barycentric representations. This means in particular that the

geometry of any real crystal structure is completely deter-

mined, besides by its lattice basis, by its co-lattice. Each co-

lattice vector L�i is equal to the distance vector from the

respective atom Mi to the centre of gravity C of its first

neighbours multiplied by its degree,

L�i ¼
P
k�i

MiMk ¼
P
k�i

MiMk þ
P
k�i

MkC ¼ riMiC:

5.1. The hexagonal net

As a simple example of a barycentric representation, let us

consider the hexagonal net hcb; Fig. 4 displays its quotient

graph K
ð3Þ
2 (the graph with two vertices and triple edges) with

voltage assignment in Z2. The bases of the cycle and co-cycle

space are given by

Bc ¼ fe1 � e2; e2 � e3g; Bs ¼ fe1 þ e2 þ e3g;

from which we derive matrix B� = X� Y and its inverse (the

first row of B� for instance reads 1	 e1 � 1	 e2 þ 0	 e3 =

e1 � e2),
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Figure 4
K
ð3Þ
2 with voltage assignment in Z2 and a 2-periodic representation of the

derived net highlighting the unit cell.



B� ¼

1 �1 0

0 1 �1

1 1 1

0
@

1
A; B��1

¼

2=3 1=3 1=3

�1=3 1=3 1=3

�1=3 �2=3 1=3

0
@

1
A:

Reading the net voltages for each cycle on the graph K
ð3Þ
2 and

adding the zero row for the co-lattice vector yields

�ðBÞ ¼
1 0

0 1

0 0

0
@

1
A; �þ ¼ B��1�ðBÞ ¼

2=3 1=3

�1=3 1=3

�1=3 �2=3

0
@

1
A;

where the lattice basis (a; b) has been used as the basis of E2.

The results are shown in the right-hand part of Fig. 4 where it

can be seen that the derived net is the honeycomb, or hexa-

gonal net, drawn here in its most symmetrical representation.

The lattice vectors, however, are not determined by the above

results and further analysis is necessary to find the Bravais

lattice type; this analysis is postponed to x7.

6. Embeddings

Chemical properties impose severe restrictions to repre-

sentations of periodic nets describing the topology of crystal

structures. The question was thoroughly discussed by

Delgado-Friedrichs et al. (2005), where it was suggested that,

for generalized nets, the distance between non-linked points

could be shorter than the distance between linked points,

depending on the flexibility of the linkers. We shall thus

conform to those authors and disregard distance considera-

tions as long as they are not null. We say that a representation

presents crossings when it is not injective, i.e. when two

non-adjacent edges are represented as intersecting lines.

According to the terminology in use in topological graph

theory (Gross & Tucker, 2001), we shall use the following

definition.

Definition 6.1. The image in Euclidian space of a periodic net

by a periodic representation is called an embedding if this

representation has no crossings.

Eventually, we shall say that an embedding is a good embed-

ding if the distance between non-bonded points is strictly

larger than the length of any line.

Notice that Delgado-Friedrichs & O’Keeffe (2005) call a

faithful embedding what we simply refer to as an embedding.

We prefer to specify it explicitly when a representation does

present crossings. It may be useful also to distinguish the case

where distinct vertices of the net have superposed images by

the representation; we will then say that the representation

presents collisions, which is clearly a special case of crossings.

A net was said to be stable in Delgado-Friedrichs & O’Keeffe

(2005) when its barycentric representation does not present

collisions, which does not prevent the occurrence of crossings.

Definition 6.2. The integral embedding of a minimal net is

defined as the image by the identity representation of G� in

E
m with positive arcs given by �þ = I m, where I m is the m	m

unit matrix.

As a simple example, consider the 1-periodic graph derived

from the 2-cycle C2 with edge labels given in Fig. 2. This graph

is not a minimal net since it is not 3-connected but we may

nonetheless define an integral embedding by representing its

oriented edges e1 and e2 by two basis vectors e1 and e2 of E2.

We may look at this embedding as an infinite flight of stairs in

the direction 11.

It was shown by Eon (1999) that the above representation

provides indeed an embedding for any minimal net in Em.

Since the periodicity of minimal nets is equal to the cyclomatic

number of their quotient graph cðGÞ = m� nþ 1 
 m, the

integral embedding is generally subperiodic, with finite

extension along the co-cycle space. Integral embeddings are

thus generalizations of layer structures.

6.1. The minimal net derived from the dumbbell graph

Fig. 5 shows the dumbbell graph, a graph with two loops and

a bridge (a cut edge), with voltage assignment in Z2 and a

2-periodic representation of the derived (minimal) net. Since a

bridge belongs to the co-cycle space of the graph, the corre-

sponding line lattice must collapse in any barycentric repre-

sentation of the net. Any non-barycentric representation in

E
2 displays a crossing of the two line lattices mapped by the

loops. The 2-periodic integral embedding in E3 avoids cross-

ings but displays non-bonded points at the same distance as

bonded points, hence there is no good embedding of the net

derived from the dumbbell graph. Note that a good embed-

ding of the net in E3 has been exhibited by Koch & Fischer

(1978), as the non-planar sphere packing KIa, but the unit cell

needs to be duplicated in both crystallographic directions, as

drawn in Fig. 6. The quotient graph of the net by the corre-

sponding subgroup of index 4 has thus 4	 2 = 8 vertices and

4	 3 = 12 edges, hence cyclomatic number c = 5, as shown in

Fig. 6. In accordance with Definition 4.2, KIa as a periodic net

is not isomorphic to the minimal net derived from the

dumbbell graph.

7. Symmetry and metric tensor

We first focus on crystallographic nets and some special

embeddings. Algebraic methods are used to determine the
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Figure 5
A graph with a bridge and voltage assignment in Z2, and a 2-periodic
representation of the derived net.



space-group type of the net from the structure of the labelled

quotient graph. They require the analysis of usual invariants,

such as determinant and trace of a linear representation of the

point-group operations and their order. The technique will be

illustrated in the case of �-cristobalite in x9; more details may

be found in Eon (1998) and Klee (2004). In this section we

formulate the main relations between the different symmetry

groups in presence.

Theorem 7.1. Let ðN; T Þ be a crystallographic net of quotient

graph G = N=T with voltage assignments in T ; the factor

group Aut(N)/T is isomorphic to the subgroup HðKÞ of

Aut(G�) that stabilizes the subspace K of cycle vectors of G

with zero net voltage.

Proof. Because a net N is a simple graph, we have Aut(N�) ’

Aut(N). It is thus equivalent to work on the net N or on the

digraph N� derived from G�. Since T is a normal subgroup of

Aut(N), any automorphism ’N of N induces an automorphism

’G in G�, defined by ’Gð½x�T Þ = ½’NðxÞ�T , where x is any vertex

or edge of N. Now closed walks in the net project on cycle

vectors of G� with zero net voltage and, conversely, cycle

vectors of G� with zero net voltage are lifted to closed walks

in the net. On the other hand, closed walks in the net

are mapped on closed walks by ’N, hence ’G stabilizes the

subspace K. Because translations in T induce the identity of

Aut(G�), two automorphisms of N in the same coset ’NT

induce the same automorphism of G�. Conversely, any auto-

morphism ’G 2 HðKÞ induces, up to translation, a unique

automorphism ’N of the net, which may be defined as follows.

We first set a vertex a as origin of the net and choose its image

’NðaÞ in the vertex lattice ’Gð½a�T Þ. To any vertex x of the net,

we associate an arbitrary walk ax from a to x. Let w be the

projection of this walk on G�; then ’NðxÞ is defined as the end

of the unique walk lifted from ’GðwÞ and starting at ’NðaÞ. We

will now show that ’N is well defined and is indeed an auto-

morphism of N.

Consider first a different walk between a and x which

projects on a walk w 0 6¼ w in G�. After reversing the orien-

tation on w, we can form the cycle vector w 0 � w 2 K (because

it is the projection of a closed walk in N). By assumption,

’Gðw
0Þ � ’GðwÞ = ’Gðw

0 � wÞ 2 K. Hence, the two walks

’Gðw
0Þ and ’GðwÞ have the same starting vertex ’Gð½a�T Þ, the

same end vertex ’Gð½x�T Þ and the same net voltage, and so the

walks lifted from them and starting at ’NðaÞ will end at the

same vertex of N. The mapping sending ’NðaÞ back to a and

lifted from ’�1
G in the same way is clearly an inverse to ’N,

showing that this mapping realizes a permutation on the

vertex set of N. Consider now two linked vertices x � y in N

and form a closed walk axya running along the edge xy. Its

projection w in G� is a closed walk of K running along

½x�T ½y�T , hence ’GðwÞ 2 K and runs along the edge

’Gð½x�T Þ’Gð½y�T Þ. Lifting this closed walk from ’NðaÞ, we

find that ’NðxÞ � ’NðyÞ, showing that ’N is an automorphism

of N. We have then put into evidence a bijection between

Aut(N)/T and HðKÞ, which is readily verified to be a group

isomorphism. &

We next observe that the space group of any embedding of

the net is isomorphic to a subgroup of its automorphism group

Aut(N). We shall rely on projection techniques to display a

representation of a crystallographic net ðN; T Þ whose space

group is isomorphic to Aut(N) provided it is an embedding of

N. Firstly, we note that the standard basis of the co-cycle space

of G� was interpreted as a set of displacements of each point

from its barycentric position, hence it must be compatible with

the operations of the symmetry group of the representation.

This condition is trivially fulfilled in barycentric representa-

tions.

We now embed the net in the edge space of G�, assuming

that the natural basis fei � eþi g is orthonormal. As above, letK

be the subspace of cycle vectors with zero net voltage in G�.

Call P the orthogonal projection in the edge space that admits

K as its kernel; P enables the construction of a lattice in the

edge space as follows. If A =
P

i �iei (�i 2 Z) is a cycle vector

of G� with net voltage a, we define the corresponding lattice

vector by the projection PðAÞ =
P

i �iPei. It is immediate that

the definition is consistent: if PðAÞ = 0, then A 2 K and so a =

�ðAÞ = 0. As a consequence, if fAig is a set of cycle vectors

whose voltages faig form a basis of the translation group T ,

then fPðAiÞg forms the basis of a lattice L with the same rank.

Since every cycle vector has net voltage in T , it must project

in L.

The barycentric representation of the net built upon

the lattice L will be called archetypical. Representations of

minimal nets obtained in this way are called archetypes (in this

case,P is the identity), so that archetypical representations are

just orthogonal projections of the archetype. Note that

archetypical representations realize the net as a quotient of

the associated minimal net. Fig. 1, for instance, shows the

archetypical representation of the net hxl as an orthogonal

projection of the archetype associated with the minimal net

pcu (in this case the archetype is an integral embedding).

Several examples of archetypical representations of 2- and 3-

periodic nets derived from the graph K
ð2Þ
3 will be constructed

in x8.

Theorem 7.2. Let ðN; T Þ be a crystallographic net with

archetypical embedding E, then the space group �ðEÞ is

isomorphic to Aut(N).
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Figure 6
A 2-periodic embedding in E3 of the minimal net derived from the
dumbbell graph and its expanded quotient graph with voltage assignment
in Z2.



Proof. It is sufficient to prove that every automorphism in

HðKÞ induces an isometry in Euclidian space, which is a

symmetry operation of �ðEÞ. An automorphism ’G 2 HðKÞ,

acting as a permutation on the arcs of G�, induces a linear

operator, say ’, in the edge space of G�. It is readily verified

that ’ preserves the inner product in the edge space. More-

over, ’ and P commute. To see this, let us analyze the prop-

erties of Q = ’�1P’:

(1) By hypothesis, ’ stabilizes K: ’ðKÞ = K and PðKÞ = 0,

hence QðKÞ = 0.

(2) Let x 2 K?, then h’ðxÞ; ’ðKÞi = hx;Ki = 0, where

the brackets hx; yi denote the inner product of vectors x

and y. Hence ’ðxÞ 2 K? implying that P’ðxÞ = ’ðxÞ and thus

QðxÞ = x.

These two observations show that Q is a projection on K?

with kernel K, so that Q = P. On the other hand, ’G induces,

through net voltages over cycles of G�, a linear operator, say

’T . The action on the lattice vector a derived from a cycle

vector A is defined by ’TðaÞ = ’TPðAÞ = P’ðAÞ, so that

’TPðAÞ = ’PðAÞ. We first check that ’T is well defined. If A0 is

another cycle vector of G� with the same net voltage a, then

A0 � A is a cycle vector with zero net voltage and so belongs to

the subspaceK. Hence, PðA0 � AÞ= 0 and ’PðA0Þ = ’PðAÞ, as

desired. Suppose now that ’PðAÞ = P’ðAÞ = PðAÞ; then

’ðAÞ � A 2 K so that ’ðAÞ has the same voltage as A. This

shows that ’T is trivial whenever ’G is an automorphism that

fixes every voltage in G�. We know that such an auto-

morphism is associated with a combinatorial translation

symmetry in a crystallographic net (Eon, 2005). If T is a

maximal translation group in Aut(N), then ’G is the identical

automorphism in G�, from which we may conclude that ’T is

trivial if and only if ’G is the identity.

We are now in a position to show the invariance by ’T of the

inner product between two lattice vectors a and b of T derived

from the cycle vectors A and B of G�:

h’TðaÞ; ’TðbÞi � h’TPðAÞ; ’TPðBÞi

¼ h’PðAÞ; ’PðBÞi

¼ hPðAÞ;PðBÞi

¼ ha; bi:

By linearity of construction of the embedding, it follows that

’T also permutes the line lattices of E and, consequently, it is

the linear part of some isometry which maps �ðEÞ on itself. &

If L denotes the p	m matrix whose rows are cycle-vectors

of G�, expressed in the natural basis of the edge-space, which

form a lattice basis of the p-periodic net, the metric tensor of

the lattice is given by

Z ¼ LPLt:

Of course, the theorems concerning the existence, uniqueness

and space-group type of barycentric embeddings for stable

crystallographic nets were already known after the work of

Delgado-Friedrichs & O’Keeffe (2003, 2005). The main

advantage of the projection method exposed here is to

effectively display such an embedding with the right symmetry

and to provide its metric tensor in a very simple way.

7.1. Metric tensor of hcb

For minimal nets, the kernel K is reduced to f0g so that P is

the unit matrix. In the case of the hexagonal net studied in

x5.1, we obtain

L ¼

�
1 �1 0

0 1 �1

�
; Z ¼

�
2 �1

�1 2

�
:

This metric tensor characterizes a hexagonal lattice ða; bÞ with

a2 = b2 = 2 and ffða; bÞ = 120�, as already pictured in Fig. 4.

The space-group type of the embedding is p6mm and its

crystallographic point group is 6mm, isomorphic to the auto-

morphism group ofK
ð3Þ
2 generated by the permutations ðe1; e2Þ,

ðe1; e3Þ and ðe1; e1Þðe2; e2Þðe3; e3Þ.

It is usually preferable to define directly ’T by a transfor-

mation matrix in a lattice basis, which is easily performed

using the net voltage over corresponding cycle vectors in the

labelled quotient graph. A cycle vector C corresponds in the

embedding to a lattice vector L = �ðCÞ, the net voltage over C.

It is sent by ’T to the lattice vector ’TðLÞ = �½’ðCÞ�. The

essential meaning of Theorem 7.2 is that ’T is an isometry of

the lattice if this lattice belongs to the same Bravais lattice

type as that determined by projection. But, instead of using

the projection method, we may apply equation (1) to derive

the embedding, be it barycentric or not. Let us denote by L�V
the co-lattice vector mapped by the co-cycle basis vector

at vertex V. Co-lattice vectors should transform according to

point-group operations of the embedding,

’TðL
�
VÞ ¼ L�’ðVÞ: ð2Þ

Corollary 7.1. Let L be a lattice in Rp belonging to the same

Bravais lattice type as the archetypical latticeL and let L� be a

set of co-lattice vectors that transform according to the linear

mapping ’T as defined above. Then ’T is a symmetry opera-

tion of the embedding derived from ðL;L�Þ by equation (1).

Proof. Consider a cycle or co-cycle basis vector C defined in

the edge basis by C =
P
�iei. After embedding the net, this

yields � =
P
�i!ðeiÞ, where � is the lattice or co-lattice vector

associated with C. Hence, on applying ’T , we find ’Tð�Þ =P
�i’T ½!ðeiÞ�. On the other hand, on applying the auto-

morphism ’ to the definition of C, we find ’ðCÞ =
P
�i’ðeiÞ. If

C is a cycle vector associated with the lattice vector � = �ðCÞ,
’ðCÞ is embedded as the lattice vector �½’ðCÞ� = ’Tð�Þ. If C is

a co-cycle vector associated with the co-lattice vector � = L�V ,

’ðCÞ is the co-cycle vector at ’ðVÞ and is embedded as the

co-lattice vector L�’ðVÞ = ’Tð�Þ. In both cases, we find after

embedding ’Tð�Þ =
P
�i!½’ðeiÞ�. Comparing both results, we

have

8� 2 L [ L� ’Tð�Þ ¼
P
�i’T ½!ðeiÞ� ¼

P
�i!½’ðeiÞ�:

Since the coefficients �i are the entries of the non-singular

cycle–co-cycle matrix, we find on inversion, for every edge ei,
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’T ½!ðeiÞ� ¼ !½’ðeiÞ�:

By construction, ’T maps the embedding on itself; being also

an isometry, ’T is a symmetry operation of the embedding. &

7.2. Embeddings of lower symmetry of hcb

Corollary 7.1 provides a simple interpretation of the results

exposed by Thimm (2009). As an example, consider the

hexagonal net embedded with a hexagonal lattice. Since the

net possesses two vertices per unit cell, the co-lattice vectors

in the most general embedding are linearly dependent:

L�A þ L�B = 0 (see Definition 5.1). As a consequence, an arbi-

trary co-lattice is invariant by the inversion of the three edges,

which is associated with the twofold rotation of the embed-

ding. This symmetry operation is thus inevitable. Choosing the

co-lattice vectors along 10, 11 or an equivalent direction

associated with a reflection plane will add this operation to

the space group of the embedding. The threefold rotation will

be allowed if the co-lattice vector is along the rotation axis,

which imposes that it is the zero vector. In other words, only

the barycentric embedding may have the full symmetry of the

net.

8. Nets derived from Kð2Þ3

This section illustrates the application of the projection

method to the determination of barycentric embeddings of

stable crystallographic nets. We shall consider several 2-, 3-

and 4-periodic nets derived from the graph K
ð2Þ
3 , the graph of

the triangle with double edges and cyclomatic number 4. It

should be stressed that the list is not exhaustive. Other peri-

odic nets, known and unknown, do admit this same graph as

their quotient graph and can be studied by the projection

method. Since the derived 2- and 3-periodic nets are non-

trivial quotient nets of the 4-periodic minimal net, we need

new algebraic tools to determine the projection matrix.

Let K be a matrix whose rows correspond to linearly inde-

pendent vectors defining the kernel of some orthogonal

projection in an orthonormal basis. Denote S = K � K t and I the

unit matrix; it can be shown (Godsil & Royle, 2004) that the

matrix of the projection is given by

P ¼ I� K t
� S�1

� K:

8.1. The hyperquartz net

The net qtz describes the simplified topology of quartz,

where every Si—O—Si link is represented by a single edge.

This net admits the graph K
ð2Þ
3 as its quotient graph, with

voltage assignment shown in Fig. 7. Since the quotient has

cyclomatic number 4, qtz is a quotient of the respective

4-periodic minimal net, which we call the hyperquartz net

(Eon, 1998; Klee, 2004). The quotient graph of this net is given

in Fig. 8(a) with voltage assignment in Z4. (Since it is a minimal

net, this assignment is quite arbitrary. The two edges AB

and AC were chosen as a spanning tree, each receiving zero

voltage. Then simple, independent voltages 1000, 0100, etc.

were attributed to each cycle defining a region in the plane.)

As in the case of hcb, the kernelK is reduced to the co-cycle

space of K
ð2Þ
3 so that we may use the unit matrix as projection

matrix P to determine directly the metric tensor of hyper-

quartz. Extracting the expression of the lattice vectors from

the quotient graph (the first row of L, for example, reads 1000 =

1	 e3 � 1	 e4), we obtain

L ¼

0 0 1 �1 0 0

1 0 0 0 0 �1

0 1 0 0 �1 0

0 0 0 1 1 1

0
BBB@

1
CCCA;

Z ¼

2 0 0 �1

0 2 0 �1

0 0 2 �1

�1 �1 �1 3

0
BBB@

1
CCCA:

If we call (a, b, c, d) this lattice basis, we see that we can choose

the new basis (a, b, c, e = a + b + c + 2d), which belongs to the

cubic orthogonal family. Hence the unit cell is Z-centred. The

space-group type in the classification of four-dimensional

crystallographic groups by Brown et al. (1978) was determined

by Eon (1998) as 25/08/03/003. For reference, Fig. 8(b) shows a

voltage assignment of K
ð2Þ
3 yielding the characteristic Bravais

type XVII/IV metric tensor,
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Figure 7
The labelled quotient graph of the quartz net.

Figure 8
(a) The labelled quotient graph of the hyperquartz net. (b) Voltage
assignment with a primitive basis in accordance with Z-class 25/11/03
(Brown et al., 1978).



Z ¼

3 0 �1 2

0 3 2 �1

�1 2 3 �2

2 �1 �2 3

0
BB@

1
CCA:

To obtain the fractional coordinates associated with this

embedding, we invert the cycle–co-cycle matrix B� and define

the voltage matrix �ðBÞ from the labelled quotient graph.

Note that the Z-centred cell (a, b, c, e) has been used here.

The first row of B�, for example, corresponds to the cycle

1	 e1 � 1	 e6 whose net voltage, 0100, is given as the first

row of �ðBÞ. The fourth row of B� is the cycle vector
P

i e1

associated with the new lattice vector e with voltage 0001. The

last two rows of B� define the co-lattice, a basis of the co-cycle

space, which is projected to zero and corresponds to the co-

cycles formed at vertices A (1	 e1 � 1	 e3 � 1	 e4 + 1	 e6Þ

and B ð�1	 e1 þ 1	 e2 þ 1	 e5 � 1	 e6Þ,

B� ¼

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 1 1 1 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0
BBBBBB@

1
CCCCCCA; �ðBÞ ¼

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA;

�þ ¼ B��1
� �ðBÞ ¼

0 1=2 0 1=6

0 0 1=2 1=6

1=2 0 0 1=6

�1=2 0 0 1=6

0 0 �1=2 1=6

0 �1=2 0 1=6

0
BBBBBB@

1
CCCCCCA:

If we set the first point at the origin, we obtain the following

coordinates, given for the cubic orthogonal cell,(
A : 0; 0; 0; 0 ð1=2; 1=2; 1=2; 1=2Þ;
B : 0; 1=2; 0; 1=6 ð1=2; 0; 1=2; 2=3Þ;
C : 0; 1=2; 1=2; 1=3 ð1=2; 0; 0; 5=6Þ:

8.2. The quartz net

We will build a three-dimensional embedding of qtz as a

projection of the respective four-dimensional archetype. The

crystallographic direction of the projection is given by the

closed trail w = e1e2e3e4e5e6, the shortest non-trivial closed

walk of the quotient graph with zero net voltage. As a general

rule to find the generators of the kernel of the projection, in

the case of a 3-periodic net, one may choose three cycles of the

quotient with independent net voltages. The net voltage of the

remaining cycles in a cycle basis of the quotient graph may

then be written as a combination of these voltages, thus

providing as many cycle vectors with zero net voltage. For qtz,

we choose � = e3 � e4, � = e1 � e6 and � = e4 þ e6 þ e5 as basis

cycles (regions of the plane) with independent net voltages

100, 010 and 001, respectively. The net voltage of the fourth

independent 2-cycle 	 = e2 � e5 is then read as 110, showing

that the combination �þ �þ 	 = e1 þ e2 þ e3 � e4 � e5 � e6

is a cycle vector with zero net voltage.

The following matrix K describes a basis for the kernel of

the projection, taking into account both the cycle and co-cycle

space. (The first row defines the above closed trail while the

other two rows define the basis of the co-cycle space, providing

for a barycentic representation.) By application of the above

formula, we obtain then the projection matrix P,

K ¼

1 1 1 1 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0
@

1
A;

P ¼

1=2 0 0 1=3 1=3 �1=6

0 1=2 0 1=3 �1=6 1=3

0 0 1=2 �1=6 1=3 1=3

1=3 1=3 �1=6 1=2 0 0

1=3 �1=6 1=3 0 1=2 0

�1=6 1=3 1=3 0 0 1=2

0
BBBBBB@

1
CCCCCCA:

We now write the matrix L whose rows provide the three

cycles used as basis of the net qtz, expressed in the natural

basis. (The first row, for example, reads e3 þ e4, the cycle with

net voltage 100.) The matrix Z of the metric tensor can then be

calculated,

L ¼

0 0 1 1 0 0

1 0 0 0 0 1

0 0 0 1 1 1

0
@

1
A;

Z ¼

4=3 �2=3 0

�2=3 4=3 0

0 0 3=2

0
@

1
A:

The latter matrix is in agreement with Bravais type hP, with

the ratio c=a = 3
ffiffiffi
2
p
=4 ’ 1:061, not far from the experimental

value c=a = 5:47=5:01 ’ 1:092.

To find the fractional coordinates associated with this

embedding, we invert the cycle–co-cycle matrix B� and define

the voltage matrix �ðBÞ from the labelled quotient graph [the

first row of B, for example, corresponds to the cycle e1 þ e6

whose net voltage, 010, is given as the first row of �ðBÞ; the last

two rows of B� define a basis of the co-cycle space, which are

projected to zero],

B� ¼

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

0 0 0 1 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0
BBBBBB@

1
CCCCCCA; �ðBÞ ¼

0 1 0

1 1 0

1 0 0

0 0 1

0 0 0

0 0 0

0
BBBBBB@

1
CCCCCCA;

�þ ¼ B��1
� �ðBÞ ¼

0 1=2 1=3

�1=2 �1=2 1=3

1=2 0 1=3

�1=2 0 1=3

1=2 1=2 1=3

0 �1=2 1=3

0
BBBBBB@

1
CCCCCCA:

Let us put point A at position ð1=2; 1=2; 2=3Þ; the position of

the remaining points is obtained from affine conditions,

directly from the quotient graph [for example, B = Aþ !ðe1Þ].
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We obtain the following coordinates, corresponding to

Wyckoff position 3c,

A : 1=2; 1=2; 2=3;
B : 1=2; 0; 0;
C : 0; 1=2; 1=3:

8<
:

It may be verified that the space-group type of this embedding

is P6422 (No. 181); if, however, the sign of the component

along the c axis is reversed for both voltages over e2 and e5,

the enantiomorphic embedding with space-group type P6222

is obtained. Of course, in this case, as in that of the next

two-dimensional nets, the results are the same as given by

SYSTRE.

8.3. The Kagome net

kgm is a two-dimensional net also admitting K
ð2Þ
3 as its

quotient graph, as given in Fig. 9.

An embedding of this net corresponds now to a two-

dimensional projection of the archetype associated with K
ð2Þ
3 .

The kernel may be defined by the two independent cycles with

zero net voltage, namely e1e2e4 and e3e6e5. The kernel of the

projection is described by matrix K as follows (notice the first

two rows corresponding to the above referred cycles), leading

to the projection matrix P,

K ¼

1 1 0 1 0 0

0 0 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0
BB@

1
CCA;

P ¼

1=3 1=6 �1=6 1=6 �1=6 1=3

1=6 1=3 �1=6 1=6 1=3 �1=6

�1=6 �1=6 1=3 1=3 1=6 1=6

1=6 1=6 1=3 1=3 �1=6 �1=6

�1=6 1=3 1=6 �1=6 1=3 1=6

1=3 �1=6 1=6 �1=6 1=6 1=3

0
BBBBBB@

1
CCCCCCA:

Only two cycles are now needed to define the basis of the

embedding and these are listed as rows of matrix L, leading to

the metric tensor Z,

L ¼
1 0 0 0 0 1

0 0 1 1 0 0

� �
;

Z ¼
4=3 �2=3

�2=3 4=3

� �
:

The cycle–co-cycle matrix is clearly the same as that of the qtz

net; only the voltage matrix needs to be written to obtain the

arc matrix,

�ðBÞ ¼

1 0

1 1

0 �1

0 1

0 0

0 0

0
BBBBBB@

1
CCCCCCA; �þ ¼

1=2 0

�1=2 �1=2

0 �1=2

0 1=2

1=2 1=2

�1=2 0

0
BBBBBB@

1
CCCCCCA:

If we set point A at position ð1=2; 1=2Þ, we obtain the following

coordinates, corresponding to Wyckoff position 3c in space-

group type p6mm,

A : 1=2; 1=2;
B : 0; 1=2;
C : 1=2; 0:

8<
:

8.4. The b-W net

We look at another two-dimensional net called �-W (vertex

symbol ½3:6:3:6�½3:3:6:6�2), also admitting K
ð2Þ
3 as its quotient

graph, as given in Fig. 10.

We may again find two independent cycles with zero net

voltage, namely e1e2e3 and e3e6e5. Note that these cycles run

along a common edge, e3, whereas the two cycles defining the

kernel for kgm are edge-disjoint. The kernel of the projection

is then described by matrix K as follows (notice the first two

rows corresponding to the above referred cycles), leading to

the projection matrix P,

K ¼

1 1 1 0 0 0

0 0 1 0 1 1

1 0 1 1 0 1

1 1 0 0 1 1

0
BB@

1
CCA;

P ¼

7=24 �5=24 �1=12 1=6 7=24 �5=24

�5=24 7=24 �1=12 1=6 �5=24 7=24

�1=12 �1=12 1=6 �1=3 �1=12 �1=12

1=6 1=6 �1=3 2=3 1=6 1=6

7=24 �5=24 �1=12 1=6 7=24 �5=24

�5=24 7=24 �1=12 1=6 �5=24 7=24

0
BBBBBB@

1
CCCCCCA:

The lattice basis of the embedding in the edge space is the

same as for kgm and leads to the following metric tensor,

Z ¼
1 0

0 3=2

� �
:

The cycle–co-cycle matrix is still the same as that of the qtz

net, so we just write the voltage matrix and derive the arc

matrix,
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Figure 9
The labelled quotient graph of the Kagome net.



�ðBÞ ¼

1 0

1 0

0 �1

0 1

0 0

0 0

0
BBBBBB@

1
CCCCCCA; �þ ¼

1=2 1=6

�1=2 1=6

0 �1=3

0 2=3

1=2 1=6

�1=2 1=6

0
BBBBBB@

1
CCCCCCA:

If we set point A at position ð1=2; 1=3Þ, we obtain the following

coordinates, corresponding to Wyckoff positions 2h for A and

C and 1b for B in space-group type p2mm,

A : 1=2; 1=3;
B : 0; 1=2;
C : 1=2; 2=3:

8<
:

The derived embedding of the �-W net is represented in Fig. 11

with the rectangular unit cell highlighted. Although the space

group of the embedding is maximal, it is clear that more

regular embeddings can be drawn by asking, for example, that

all six arcs be embedded with the same length. We examine

the possibility of realizing such new constraints within the

maximal space group in the following section.

9. Non-barycentric embeddings of stable nets

We shall consider two examples of non-barycentric embed-

dings of stable nets in this section. In the first one, the coor-

dinates and lattice vectors of the barycentric embedding are

simply altered to obtain a better embedding within the same

space-group type. In the second example, we allow a reduction

in the symmetry of the embedding, as it occurs in real crystal

structures. In both examples, the embedding is obtained using

equation (1), with Corollary 7.1 ensuring that the maximum

symmetry is attained.

9.1. A regular embedding of the b-W net

The projection method provides a Euclidian embedding of

any crystallographic net with maximum symmetry but with

strongly constrained geometry. It may be noted that contin-

uous distortions of the embedding enable, in some cases, its

geometrical properties to be changed within the same space-

group type. From Proposition 5.1, two different modes of

distortion can be considered; one may change the lattice

parameters of the archetypical embedding and/or shift some

vertex lattices from their barycentric position. The former

mode depends on the number of freedom degrees left by the

metric tensor. In cubic groups, for instance, the length ratios

cannot be changed. In the latter mode, the vectors of the co-

cycle basis should be projected onto a set of non-zero vectors

globally invariant by the point-group operations of the

embedding. Site symmetry imposes strong restrictions to

possible values of shift vectors. We analyse in detail the case of

the �-W net.

From the arc matrix shown above, the lengths of arcs e3 and

e4 are, respectively, one third and two thirds of lattice para-

meter b. Hence, no modification of lattice parameters can

change the length ratio between these two arcs. Now, vertex B

is located on Wyckoff site 1b of local symmetry 2mm; no shift

can preserve this symmetry. On the other hand, vertices A and

C are situated on a mirror plane (site symmetry m) so that any

shift along the direction of the plane is allowed. Naturally, the

two shift vectors on A and C must be related by symmetry

since the two point lattices are images of each other by

reflection. But this condition is automatically fulfilled since the

sum of the outgoing arcs on the complete set of vertices is

zero. We may thus change the voltage matrix �ðBÞ as follows

and obtain the more general arc matrix �þðxÞ (note the

projection of the first co-cycle basis vector on 0x),

�ðBÞ ¼

1 0

1 0

0 �1

0 1

0 x

0 0

0
BBBBBB@

1
CCCCCCA; �þðxÞ ¼

1=2 1=6þ x=6

�1=2 1=6þ x=6

0 �1=3� x=3

0 2=3� x=3

1=2 1=6þ x=6

�1=2 1=6þ x=6

0
BBBBBB@

1
CCCCCCA:

Equalling the lengths of e3 and e4 gives x = 1/2, with the

following new arc matrix and corresponding fractional coor-

dinates,

�þð1=2Þ ¼

1=2 1=4

�1=2 1=4

0 �1=2

0 1=2

1=2 1=4

�1=2 1=4

0
BBBBBB@

1
CCCCCCA;

A : 1=2; 1=4;
B : 0; 1=2;
C : 1=2; 3=4:

8<
:
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Figure 11
Archetypical embedding of the �-W net.

Figure 10
The labelled quotient graph of the �-W net.



It is clear that we can still define lattice parameters in space-

group type p2mm to obtain all six arcs of unit length, by

choosing a =
ffiffiffi
3
p

and b = 2.

9.2. a-Cristobalite

Fig. 12 shows the labelled quotient graph, C
ð2Þ
4 (the 4-cycle

with double edges), of the net associated with �-cristobalite

taken with relation to the experimental translation group T

(Z = 4), according to Peacor (1973). The unit cell is twice that

of �-cristobalite (Z = 2), but �- and �-cristobalite are struc-

turally isomorphic and the associated net is isomorphic to

diamond (dia). If we use the information contained in the

quotient graph, the SYSTRE program will provide the ideal

embedding with space group Fd3m and identify the net as dia.

In the same way, the projection method described above will

give the ideal coordinates of the barycentric embedding, which

are those of �-cristobalite. This will happen because the fixed-

point free automorphism

’ ¼ ðA;CÞðB;DÞðe1; e3Þðe2; e4Þðe5; �ee8Þðe6; �ee7Þ

of the labelled quotient graph does not change the net voltage

over any cycle, so that it describes a combinatorial translation

of the net, which in turn generates a translation of the bary-

centric embedding. It may be verified that the quotient of C
ð2Þ
4

by ’ is isomorphic to K
ð4Þ
2 , the quotient graph of dia. In order

to obtain the correct information from the effective (experi-

mental) quotient graph, we need to introduce some distortion

in the unit cell according to the symmetry lowering. This can

only be done by choosing different co-lattice vectors for the

co-cycles at vertices A and C, and/or B and D, which will break

the ideal symmetry. Moreover, the experimental translation

subgroup T is not a normal subgroup of the full automorphism

group of the net. Indeed, there is no automorphism of order 3

in C
ð2Þ
4 , so that no threefold rotation in the net dia can respect

the translational equivalence classes by T. Hence, we shall

determine the ideal point group of �-cristobalite from a

maximal subgroup of Aut(C
ð2Þ
4 ) that exchanges the cycle

vectors of zero net voltage and does not contain ’. The co-

lattice vectors will then be chosen according to this point

group.

We first determine the ideal metric tensor according to the

labelled quotient graph. We begin with the kernel and lattice

matrices K and L,

K ¼

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1

0
BBBBBB@

1
CCCCCCA;

L ¼

0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0

0 1 1 0 1 0 1 0

0
B@

1
CA;

Z ¼

1 0 0

0 1 0

0 0 2

0
@

1
A:

As expected, the metric tensor indicates a primitive tetragonal

cell. We shall now build a linear representation, �, of the

automorphisms of C
ð2Þ
4 using the lattice basis of �-cristobalite.

Consider, for example, the images of three cycle vectors with

independent net voltages 100, 010 and 001 by the auto-

morphism


 ¼ ðA;B;C;DÞðe1; e7; e4; e5Þðe2; e8; e3; e6Þ:

We may choose, respectively, the cycles (e5 � e6), (e2 � e1) and

(e2 þ e7 þ e3 � e5). We initially form the images of these cycles

by 
 and then read the net voltages over the image cycles,

ðe5 � e6Þ ! ð�e1 þ e2Þ : 010;
ðe2 � e1Þ ! ðe8 � e7Þ : 100;

ðe2 þ e7 þ e3 � e5Þ ! ðe8 þ e4 � e6 þ e1Þ : 001;

8<
:

from which we write the associated matrix

�ð
Þ ¼
0 1 0

1 0 0

0 0 1

0
@

1
A:

Since this matrix corresponds to a fourfold rotation of the

lattice, we look for a maximal acceptable subgroup of

Aut(C
ð2Þ
4 ) that contains 
. Aut(C

ð2Þ
4 ) is the direct product of

Aut(C4) by the group of order 24 that exchanges the four

double edges. But we observe that the cycles (e5 � e6) and

(e7 � e8) have the same net voltage 100. In the same way,

(e2 � e1) and (e4 � e3) have net voltage 010. Each pair of

cycles must therefore exchange together, restricting possible

permutations to the products ðe1; e2Þðe3; e4Þ and ðe5; e6Þðe7; e8Þ.

Moreover, it is easily verified that, in combination with 
, these

products generate the undesirable automorphism ’ as follows,

f
ðe1; e2Þðe3; e4Þg
2
¼ f
ðe5; e6Þðe7; e8Þg

2

¼ 
2
ðe1; e2Þðe3; e4Þðe5; e6Þðe7; e8Þ

¼ ’:

Automorphisms corresponding to double edge exchanges

must therefore be rejected and the symmetry point group of

�-cristobalite is isomorphic to Aut(C4). There are, however,

two possible edge permutations associated with vertex per-

mutation ðA;CÞ and satisfying the above constraints, namely
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Figure 12
Voltage graph of �-cristobalite, with edges labelled on the right.



"1 ¼ ðA;CÞðe1; e8Þðe2; e7Þðe3; e5Þðe4; e6Þ;
"2 ¼ ðA;CÞðe1; e7Þðe2; e8Þðe3; e6Þðe4; e5Þ;

�
with linear representations in the lattice basis

�ð"1Þ ¼

0 1 0

1 0 0

0 0 1

0
@

1
A; �ð"2Þ ¼

0 1 0

1 0 0

0 0 1

0
@

1
A:

It may be checked that the two linear representations of the

subgroups G1 = h"1; 
i and G2 = h"2; 
i generated by any of

these permutations together with the automorphism 
 define

the same geometric crystal class 422. We may now determine

the exact nature of the isometry generated by these auto-

morphisms by looking at their translation part. Consider, for

example, the automorphism in the net, which is obtained by

lifting 
, and maps some vertex A0 in (translational) class A to

a vertex B0 in class B with A0B0 lifted from e1. On a second

application of this same automorphism, edge e1 is sent to e7 by


 and vertex B0 to some vertex C0 in class C. Therefore, as a

net result of the two consecutive mappings, the first vertex A0

has been sent to vertex C0 associated with the path AC =

e1 þ e7. Repeating this process four times, we see that vertex

A0 is mapped to some vertex A1 in the same class, but the path

A0A1 is lifted from the cycle e1 þ e7 þ e4 � e5 with net voltage

001. This shows that the associated isometry is a fourfold screw

rotation with screw vector [001]/4. On the other hand, "1 and

"2 have each two fixed vertices, hence must correspond to a

twofold rotation with axis ½110� and ½110�, respectively. The

two groups may be distinguished by analysing the combina-

tions 
"1 and 
"2,


"1 ¼ ðA;DÞðB;CÞðe1; e3Þðe2; e4Þðe5; e6Þðe7; e8Þ;

"2 ¼ ðA;DÞðB;CÞðe1; e4Þðe2; e3Þðe5; e5Þðe6; e6Þðe7; e7Þðe8; e8Þ;

�
with linear representation

�ð
"1Þ ¼

1 0 0

0 1 0

0 0 1

0
@

1
A; �ð
"2Þ ¼

1 0 0

0 1 0

0 0 1

0
@

1
A:

On proceeding as above, it may be verified that 
"1 determines

a twofold screw rotation with screw vector [100]/2 while 
"2

determines a twofold rotation with axis [010]. Hence, G1 leads

to space-group type P41212 (No. 92) and G2 to space-group

type P4122 (No. 91).

We now determine the distortion that effectively realizes

the symmetry reduction. Let us call L�A, . . . , L�D the co-lattice

vectors at vertices A, . . . , D. We only need one of them since

they are related by the fourfold rotation. Moreover, they

should respect site symmetries. Hence, L�B is along the rotation

axis associated with automorphism "i,

i ¼ 1 : L�B ¼ xx0;
i ¼ 2 : L�B ¼ xx0;

�
where x is a distortion parameter.

The two possibilities are shown in Fig. 13. It appears that the

first one, associated with space group P41212, should be

preferred, in agreement with experimental data. It corre-

sponds to an angular distortion of the silicon coordination

polyhedron and does not alter bond lengths significantly. On

the contrary, distortion along space group P4122 alternately

shortens and lengthens the bonds, a situation which may not

be so favourable in the energetic viewpoint. Accordingly, it

may be observed that all edges of the quotient graph are

equivalent by G1 while they form two orbits by G2.

It remains to calculate the atomic coordinates according to

equation (1),

B� ¼

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 1 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; �ðBÞ ¼

0 1 0

0 1 0

1 0 0

1 0 0

0 0 1

x x 0

x x 0

x x 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

where the last three rows correspond to the co-lattice vectors

L�A, L�B and L�C,

�þðxÞ ¼

x=2 1=2 1=4

x=2 1=2 1=4

x=2 1=2 1=4

x=2 1=2 1=4

1=2 x=2 1=4

1=2 x=2 1=4

1=2 x=2 1=4

1=2 x=2 1=4

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

If we set point A as follows, we obtain the coordinates of the

three other points,

A : 1=4þ x=4 1=4þ x=4 0;
B : 1=4� x=4 3=4þ x=4 1=4;
C : 3=4� x=4 3=4� x=4 1=2;
D : 3=4þ x=4 1=4� x=4 3=4;

8>><
>>:

which are in agreement with Wyckoff position 4a at

1=4þ x=4; 1=4þ x=4; 0 in space group P41212. Comparing

with experimental data, we obtain the distortion parameter

x ’ 0:2 [Si coordinates are at 0.3002, 0.3002, 0 at 301 K

according to Peacor (1973)].
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Figure 13
Two possible sets of symmetry-lowering co-lattice vectors in �-crist-
obalite, seen in projection along the 001 axis of �-cristobalite: from Fd3m
to (a) P41212, (b) P4122.



10. Embeddings of unstable 3-periodic minimal nets

Some crystallographic nets may derive from a graph with

bridges, as the 2-periodic net shown in Fig. 5; it is also the case

for seven of the 3-periodic minimal nets (Beukemann & Klee,

1992). Because bridges belong to the co-cycle space of the

quotient graph, any barycentric representation of the net

presents collisions. It is the aim of this section to propose a

non-barycentric embedding of maximum symmetry for each of

these nets. The labelled quotient graphs are gathered in Fig. 14,

where the nets have been named according to the nomen-

clature given in the above-cited paper. The argument will

parallel that of the previous section. Quotient graphs G of

3-periodic minimal nets do not possess any non-trivial cycle

vector of zero net voltage. Hence, the point group of the

embedding should be a maximal subgroup of the point group

derived from Aut(G), which exchanges the co-lattice vectors

and avoids collisions. According to Corollary 7.1, the

embedding provided by equation (1) will belong to the

appropriate space group. For each net, determination of the

space group and definition of the co-cycle vectors are briefly

described. Cell parameters and atomic coordinates are

displayed in Table 1. Because it is most probable that loops in

the quotient represent complex links in a crystal structure,

organic ligands for example, they have been arbitrarily

embedded as lines of length 3. Unless otherwise specified,

other edges have unit length.

10.1. Net 2(3, 5)2

The automorphism group of the graph is generated by the

permutations ðe1; e1Þ and ðe1; e2Þ of the two equivalent loops at

vertex A together with the inversion ðe3; e3Þ of the loop at

vertex B. The group has order 16 and is isomorphic to point

group 4=mmm, the only point group of this order. Edge AB

generates the co-cycle space and hence should be embedded

as the unique co-lattice vector. Being unique it must be

invariant by every point-group symmetry operation of the

embedding. The fourfold rotation cannot be retained because

it would lead to superposition of line AB with the c axis. The

co-lattice vector must be along a twofold axis and contained in

reflection planes, so we are left with mm2 as the maximal

acceptable subgroup of 4=mmm. This subgroup is generated

by the permutations ðe1; e2Þðe3; e3Þ and ðe3; e3Þ corresponding

to the twofold rotation with axis 110 (in the primitive cell) and

vertical reflection, respectively. The net belongs to space-

group type C2mm (No. 38). The edge AB must therefore be

embedded as the co-lattice vector along 100 of the centred

cell. Cell parameters have been chosen in order to have a

minimum angle of 60� between lines at point A.

10.2. Net 3(32, 4)2

The automorphism group of the graph is generated by the

permutations ðe1; e2Þ, ðe1; e2; e3Þ and the inversion ðe5; e5Þ. The

three transpositions ðe1; e2Þ, ðe1; e3Þ and ðe2; e3Þ generate three

reflection symmetries in a same conjugacy class while the

inversion ðe5; e5Þ generates a fourth independent reflection.

With four reflection operations and order 12, the point group

of the net is 62m. As above, the edge BC should be embedded

as a co-lattice vector which is invariant by any point-group

operation. Threefold rotations would yield superposition with

the c axis and must be discarded. These constraints leave again

Acta Cryst. (2011). A67, 68–86 Jean-Guillaume Eon � Embeddings of nets 83

research papers

Figure 14
The labelled quotient graphs of the seven 3-periodic minimal nets; edges
are labelled by numerals.

Table 1
Embeddings of unstable 3-periodic minimal nets.

Net Space group Lattice parameters Point coordinates

2ð3; 5Þ2 C2mm a = 3 A: 0, 0, 0
b = 3

ffiffiffi
3
p

B: 1/3, 0, 0
c = 3

3ð32; 4Þ2 C2mm a = 3 C: 0, 0, 0
b =

ffiffiffi
3
p

B: 1/3, 0, 0
c = 3 A: 2/3, 0, 0

3ð32; 4Þ4 C121 a = b = 3
ffiffiffi
2
p

C: 0, 0, 0
c = 3 A: 0.172, �0.172, 0.15
� = 114�

3ð32; 4Þ5 Pmm2 a = 2 A: 0, 0, 0
b = c = 3 B: 1/2, 0, 0

C: 1/2, 0, 1/3
4(3)3 C2mm a ¼

ffiffiffiffiffi
15
p

A: 0, 0, 0
b = 5 B: 0, 1/5, 0
c = 3 D: 1/

ffiffiffiffiffi
15
p

; 0; 0
4ð3Þ4 R32 a = 3 D: 0, 0, 0

� = 83.6� A: 0, 1/4, 3/4
4ð3Þ5 C2cm a = b = 3

ffiffiffi
2
p

B: 0;
ffiffiffi
2
p
=24;�1=4

c =
ffiffiffi
3
p

A: 0; 5
ffiffiffi
2
p
=24;�1=4



mm2 as the maximal acceptable subgroup with, for example,

the m operations generated by ðe1; e2Þ and ðe5; e5Þ (space

group C2mm, No. 38). On writing the corresponding linear

representations, it may be verified that the common axis is

along 120, which enables the arc matrix to be written as

follows (note the zero co-lattice vector at vertex A),

B� ¼

1 1 0 0 0

0 1 1 0 0

0 0 0 0 1

1 1 1 0 0

0 0 0 1 0

0
BBBBBB@

1
CCCCCCA; �ðBÞ ¼

1 0 0

0 1 0

0 0 1

0 0 0

x 2x 0

0
BBBBBB@

1
CCCCCCA;

�þðxÞ ¼

2=3 1=3 0

�1=3 1=3 0

�1=3 �2=3 0

�x �2x 0

0 0 1

0
BBBBBB@

1
CCCCCCA:

10.3. Net 3(32, 4)4

The automorphism group of the graph is generated by the

permutation ðe1; e2Þ of the two loops at vertices A and B and

by the inversion of each of the three loops. Having order 16, it

is isomorphic to 4=mmm. In order to avoid crossings, one can

only retain the twofold rotation generated by permutation

ðA;BÞð1; 2Þð3; 3Þ so that the point group is 2. The space group

is then C2 ðC121, No. 5).

10.4. Net 3(32, 4)5

The automorphism group of the graph is generated by the

permutation ðe1; e2Þ and by the inversion of the two loops at

vertices A and C; it is isomorphic to point group mmm. The

only subgroup avoiding crossings is mm2, which is derived

from the inversion of the two loops and the bridge BC is along

the twofold rotation axis, parallel to 001. The space group is

Pmm2 (No. 25).

10.5. Net 4(3)3

The automorphism group of the graph is generated by the

permutations ðe5; e6Þ, ðe3; e4Þðe5; e6Þ and by the inversion of

the loop e1 at vertex D. It is also isomorphic to point group

mmm and the only subgroup avoiding crossings is mm2,

which is derived from the loop inversion and permutation

ðe3; e4Þðe5; e6Þ. The bridge AD is along the twofold rotation

axis, parallel to 110. The space group is C2mm (No. 38) and

atomic coordinates are obtained from equation (1),

B� ¼

1 0 0 0 0 0

0 0 1 1 1 0

0 0 1 1 0 1

0 1 0 0 0 0

0 0 1 0 1 1

0 0 0 1 1 1

0
BBBBBB@

1
CCCCCCA; �ðBÞ ¼

0 0 1

0 1 0

1 0 0

x �x 0

0 0 0

0 0 0

0
BBBBBB@

1
CCCCCCA;

�þðxÞ ¼

0 0 1

x �x 0

1=5 1=5 0

�1=5 �1=5 0

�2=5 3=5 0

3=5 �2=5 0

0
BBBBBB@

1
CCCCCCA:

Edges BC have been embedded as lines of length 2.

10.6. Net 4(3)4

The automorphism group of the graph is generated by the

six permutations of the three vertices and the 23 inversions of

the loops. With order 48, the point group of the net is thus

m3m. The maximal site symmetry one can embed the three

edges incident to vertex D is 62m. Two maximal acceptable

common subgroups of m3m and 62m are 3m and 32. In both

cases we may choose the threefold rotation of axis 111 derived

from the permutation ðe1; e2; e3Þ as a first generator. Point

group 3m is obtained by adding the reflection derived from

ðe2; e3Þ while 32 requires addition of the twofold rotation

derived from ðe1; e1Þðe2; e3Þ with axis along 011. It may be

verified that only 32 does not yield crossings. The space group

is thus R32 (No. 155) and is obtained when edges e4, e5 and e6

are embedded along 011, 101 and 110, respectively. Note that

lines AA are along the 100 axis.

10.7. Net 4(3)5

The automorphism group of the graph is generated by the

inversions of the loops at vertices A and D and the two

permutations ðe2; e3Þ and ðe1; e4Þðe2; e3Þðe5; e6Þ. With order 16,

it is isomorphic to 4=mmm. The maximal subgroup avoiding

crossings is generated by the two permutations ðe2; e3Þ and

ðe1; e4Þðe2; e3Þðe5; e6Þ and is isomorphic to mm2. Note that the

former permutation corresponds to a reflection in the hori-

zontal plane and the latter corresponds to a glide reflection (if

vertex B is first sent to Bþ e2, a second mapping sends it to

Bþ e2 � e3 = Bþ c); the space group is C2cm (No. 40). Co-

lattice vectors at vertices B and C may be taken equal to zero.

Both equivalent edges e5 and e6 must then be embedded as co-

lattice vectors along 110 (in the primitive cell) to obtain the

right symmetry.

Whereas the space-group types found for the first six nets

are in agreement with those given by Beukemann & Klee

(1992), the maximum symmetry of the embedding of 4ð3Þ5 is

higher than that given by these authors (Pm, No. 6).

11. Embeddings of non-crystallographic nets

Equation (1) and Corollary 7.1 may also be applied in the case

of non-crystallographic nets; it is thus possible to find

embeddings whose symmetry operations are derived from the

automorphisms of the quotient graph. It is known, however,

that non-crystallographic nets admit more than one maximal

translation group and the quotient graphs of the net by these

translation groups are not necessarily isomorphic. In accor-

dance to Definition 4.2, two maximal translation groups T1

and T2 of the net N determine two distinct periodic nets
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ðN;T1Þ and ðN;T2Þ that may have non-isomorphic quotients

and different embeddings of maximum symmetry. We shall

illustrate our point on the 3-periodic net first described by

Chung et al. (1984) obtained from the 1-periodic ladder,

periodically repeated in two independent directions. Two

labelled quotient graphs Ga and Gb of the net are given in

Figs. 15(a) and 15(b), respectively; the reader may easily verify

that the corresponding systre keys generate an error message

from SYSTRE. The barycentric representations obtained from

equation (1) effectively display collisions: edges e1, e6 and e7

are embedded as the zero line, so that vertices A and B are

embedded as the same point as well as vertices C, D and E.

This result may be explained by considering the auto-

morphism ’ = ðe2; e5Þðe3; e4Þðe6; e7Þðe1; e1Þ of any of the

quotient graphs. Because ’ does not change any net voltage on

cycle vectors in G (G = Ga or Gb) it must generate a trans-

lation in the barycentric representation of the net. But E and

F are fixed by ’, so that the corresponding isometry is the

identity, with all its consequences. For instance, e1 and its

image e1 are embedded as the same line and must be the zero

line, leading to a collision between A and B. To avoid colli-

sions, we will use different co-lattice vectors at vertices A and

B or C and D, making an obstacle to the translation. We shall

determine these vectors by looking for the largest auto-

morphism subgroup of Aut(G) that preserves the kernel K

(the subspace of cycle vectors of zero net voltage) and does

not contain ’.

We deal first with Ga. Besides ’, Aut(Ga) is generated by the

inversion of the loop ðe1; e1Þ and by the permutations ðe8; e9Þ,

ðe2; e3Þðe4; e5Þ. The point group derived from the latter three

automorphisms is mmm. It must be rejected because every

point is located at a site of symmetry mmm, which implies that

all co-lattice vectors are null. But we may take instead the

subgroup generated by the product ’ðe10; �ee10Þ and by the

permutations ðe8; e9Þ and ðe2; e3Þðe4; e5Þ. The point group is still

mmm but the co-lattice vectors at A and B, as well as C and D,

are exchanged by the first permutation and should be along

100. This is in fact the only choice avoiding collisions. We may

even choose L�A = L�B = 0 and L�C = �L�D = x00. The space

group is Pmmm (No. 47); lattice parameters and coordinates

providing lines of unit length, except along the 100 axis, are as

follows (x = 1/2),

a ¼ 4;
b ¼ 2;
c ¼

ffiffiffi
3
p
;

8<
:

F : 0 0 0;
E : 0 1=2 0;
C : 1=4 1=2 0;
A : 1=8 1=2 1=2:

8>><
>>:

The argument is similar in the case of Gb, but it may be

checked that most reflection symmetries produce crossings

in the derived net. The largest possible point group is 222

generated by the following permutations,

ðe2; e5Þðe3; e4Þðe6; e7Þðe1; e1Þðe8; e9Þðe10; e10ÞðA;BÞðC;DÞ;
ðe2; e4Þðe3; e5Þðe8; e9Þðe1; e1ÞðA;BÞ:

�
The space group is P222 (No. 16). With C and D being

invariant by the second automorphism, the corresponding

co-lattice vectors are oriented along 100, the rotation axis.

Similarly, co-lattice vectors at vertices A and B are along 010,

L�C ¼ �L�D ¼ x00;
L�A ¼ �L�B ¼ 0y0:

�
Possible lattice parameters and coordinates are as follows

(lines corresponding to edges e2 to e5 have length
ffiffiffi
2
p

for x =

y = 1),

a ¼ 3;
b ¼ 2;
c ¼

ffiffiffi
3
p
;

8<
:

F : 0 0 0;
E : 0 1=2 0;
C : 1=3 1=2 0;
A : 0 1=4 1=2:

8>><
>>:

Observe that the nets derived from Ga and Gb are isomorphic

as nets, but not as periodic nets. Their maximum-symmetry

embeddings belong to different space-group types and are not

ambiently isotopic.

Supplementary materials provide an edge-definition file,

drawings generated by TOPOS (Blatov, 2006) and the

TOPOS database for the embeddings of the seven 3-periodic

minimal nets with collision and the two non-crystallographic

nets Ga and Gb.1

12. Summary and final considerations

Given a labelled quotient graph, it was shown that a Euclidian

representation of the derived periodic net is completely

determined, up to translation, by the choice of a lattice basis

and of a co-lattice. Maximum-symmetry representations are

obtained when the lattice belongs to the lattice type of the

periodic net and the co-lattice is invariant by its point group.

Barycentric representations, corresponding to the special case

of an identically null co-lattice, automatically fulfil the latter

condition. On the other hand, a periodic net with quotient

graph G may be viewed as a quotient of the minimal net

derived from G. These properties suggested considering the

orthogonal projection of a barycentric embedding of the

corresponding minimal net as a special construct with

maximum symmetry. The lattice type of the net may be

obtained directly from the metric tensor of this representation,
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Figure 15
Two possible labelled quotient graphs of the same crystallographic net;
edges are labelled by numerals.

1 Supplementary data for this article are available from the IUCr electronic
archives (Reference: AU5105). Services for accessing these data are described
at the back of the journal.



without previous knowledge of its space-group type. The

projection itself is generally too much constrained and is not

the best representation of the net. Equation (1) is preferen-

tially used to obtain the fractional atomic coordinates. At this

step, barycentric conditions may be relaxed and lower site

symmetries imposed. Adequate lattice and distortion para-

meters may be chosen to obtain a refined embedding.

While the topology of a crystal structure is given by its

labelled quotient graph, it is emphasized that the co-lattice

vectors together with the lattice vectors provide a complete

geometric descriptor of the structure. The co-lattice was

interpreted as a measure of the distortion of the embedding in

relation to the barycentric representation built on the same

lattice. As such, a comparative analysis of co-lattice vectors

from experimental data should provide valuable insights in

questions of structural chemistry, in particular in the study of

displacive transitions.
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